Counting lattice vectors

نویسنده

  • Denis Xavier Charles
چکیده

We consider the problem of counting the number of lattice vectors of a given length and prove several results regarding its computational complexity. We show that the problem is ♯Pcomplete resolving an open problem. Furthermore, we show that the problem is at least as hard as integer factorization even for lattices of bounded rank or lattices generated by vectors of bounded norm. Next, we discuss a deterministic algorithm for counting the number of lattice vectors of length d in time 2 , where r is the rank of the lattice, s is the number of bits that encode the basis of the lattice. The algorithm is based on the theory of modular forms. Date: January 2005. Research supported in part by NSF grant CCR-9988202. A preliminary version of this work was presented as a contributed talk at the Banff conference in honour of Prof. Hugh C. Williams (May 2003). 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Lattice Paths and Walks with Several Step Vectors

Many famous researchers in computer science, mathematics and other areas have studied enumerative problems in lattice path and walks which could be applied to many fields. We will discuss some new enumerative problems including some pattern avoidance problems in lattice paths and walks with several step vectors. Results on stretches and turns are presented and several open problems are posted. ...

متن کامل

The lattice Schwinger model as a discrete sum of filled Wilson loops

Using techniques from hopping expansion we identically map the lattice Schwinger model with Wilson fermions to a model of oriented loops on the lattice. This is done by first computing the explicit form of the fermion determinant in the external field. Subsequent integration of the gauge fields renders a sum over all loop configurations with simple Gaussian weights depending on the number of pl...

متن کامل

On f-vectors of Minkowski additions of convex polytopes

The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes we call perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of face lattice of the sum in terms of the face lattice of a given perfectly centered polytope. Exact f...

متن کامل

f-Vectors of Minkowski Additions of Convex Polytopes

The objective of this paper is to present two types of results on Minkowski sums of convex polytopes. The first is about a special class of polytopes called perfectly centered and the combinatorial properties of the Minkowski sum with their own dual. In particular, we have a characterization of faces of the sum in terms of the face lattice of a given perfectly centered polytope. Exact face coun...

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2007